উচ্চতর গণিত

পরমমান ফাংশন

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | NCTB BOOK

পরমমান ফাংশন (Absolute Value Function) এমন একটি ফাংশন, যা যেকোনো সংখ্যার ধনাত্মক মান প্রদান করে। সহজভাবে বললে, কোনো সংখ্যার পরমমান মানে হলো সেই সংখ্যার মূল মান, কিন্তু ধনাত্মক রূপে। পরমমান ফাংশনকে সাধারণত \( f(x) = |x| \) আকারে লেখা হয়।


পরমমান ফাংশনের সংজ্ঞা

\[
|x| =
\begin{cases}
x, & \text{যদি } x \geq 0 \
-x, & \text{যদি } x < 0
\end{cases}
\]

অর্থাৎ:

  • যদি \( x \) ধনাত্মক বা শূন্য হয়, তবে পরমমান তার মূল মানই থাকে।
  • যদি \( x \) ঋণাত্মক হয়, তবে পরমমান তার বিপরীত ধনাত্মক মানে রূপান্তরিত হয়।

পরমমান ফাংশনের বৈশিষ্ট্য

১. ডোমেন: পরমমান ফাংশনের ডোমেন হলো সব বাস্তব সংখ্যা, অর্থাৎ \( x \in \mathbb{R} \)।

২. রেঞ্জ: পরমমান ফাংশনের রেঞ্জ হলো সব ধনাত্মক বাস্তব সংখ্যা এবং শূন্য, অর্থাৎ \( y \geq 0 \)।

৩. গ্রাফ: পরমমান ফাংশনের গ্রাফ \( y = |x| \) হলো একটি V-আকৃতির রেখা, যা \( y \)-অক্ষ বরাবর প্রতিসম। এই গ্রাফটি মূলবিন্দু (0, 0) থেকে শুরু হয় এবং ধনাত্মক ও ঋণাত্মক উভয় দিকেই সমানভাবে বিস্তৃত হয়।

৪. প্রতিসাম্য: পরমমান ফাংশনের গ্রাফটি \( y \)-অক্ষের সাপেক্ষে প্রতিসম, যা নির্দেশ করে যে \( |x| = |-x| \)।


উদাহরণ

  • \( |5| = 5 \) (কারণ \( 5 \) ইতিবাচক, তাই পরমমান তার মূল মানই থাকে)।
  • \( |-3| = 3 \) (কারণ \( -3 \) ঋণাত্মক, তাই পরমমান ধনাত্মক হয়ে \( 3 \) হয়)।
  • \( |0| = 0 \) (শূন্যের পরমমান শূন্যই থাকে)।

পরমমান ফাংশনের ব্যবহার

পরমমান ফাংশন গণিতের বিভিন্ন ক্ষেত্রে গুরুত্বপূর্ণ, যেমন:

  • দূরত্ব মাপা: দুই বিন্দুর মধ্যে দূরত্ব নির্ণয়ে ব্যবহৃত হয়।
  • জটিল সংখ্যা: জটিল সংখ্যার পরমমান নির্ণয়ে।
  • বাস্তব সমস্যা: বাস্তব জীবনের বিভিন্ন সমস্যায়, যেমন ত্রুটি বা বিচ্যুতি নির্ণয় এবং দৈর্ঘ্য মাপা।

পরমমান ফাংশন আমাদের কোনো সংখ্যার নির্দিষ্ট দূরত্ব বা পরিমাপকে ধনাত্মক রূপে প্রকাশ করতে সাহায্য করে, যা অনেক গাণিতিক সমস্যায় প্রয়োজনীয়।

আরও দেখুন...

Promotion